CHALLENGES OF USING THE FUZZY APPROACH IN EXASCALE COMPUTING SYSTEMS
- Details
- Hits: 1220
Volume 4 (2), December 2021, Pages 198-205
Nigar Ismayilova
Azerbaijan State Oil and Industry University, Baku, Azerbaijan, This email address is being protected from spambots. You need JavaScript enabled to view it.
Abstract
In this paper were studied opportunities of using fuzzy sets theory for constructing an appropriate load balancing model in Exascale distributed systems. The occurrence of dynamic and interactive events in multicore computing systems leads to uncertainty. As the fuzzy logic-based solutions allow the management of uncertain environments, there are several approaches and useful challenges for the development of load balancing models in Exascale computing systems.
Keywords:
Fuzzy load balancing, Dynamic computing systems, Heterogenous distributed systems, Dynamic and Interactive events.
DOI: https://doi.org/10.32010/26166127.2021.4.2.198.205
Reference
Adibi, E., & Khaneghah, E. M. (2020). ExaRD: introducing a framework for empowerment of resource discovery to support distributed exascale computing systems with high consistency. Cluster Computing-the Journal of Networks Software Tools and Applications, 23(4), 3349-3369. https://doi.org/10.1007/s10586-020-03091-5
Adibi, E., & Khaneghah, E. M. (2021). A mathematical model to describe resource discovery failure in distributed exascale computing systems. Peer-to-Peer Networking and Applications, 14(3), 1021-1043. https://doi.org/10.1007/s12083-020-01067-1
Ahn, H. C., & Youn, H. Y. (2005). A fuzzy grouping-based load balancing for distributed object computing systems. Computational Science and Its Applications - Iccsa 2005, Vol 4, Proceedings, 3483, 916-925.
Ali, M., & Bagchi, S. (2018). Hybrid Architecture for Autonomous Load Balancing in Distributed Systems based on Smooth Fuzzy Function. Intelligent Automation and Soft Computing, 24(4), 851-868.
Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R. (2020). DTHMM ExaLB: discrete-time hidden Markov model for load balancing in distributed exascale computing environment. Cogent Engineering, 7(1), 22, Article 1743404. https://doi.org/10.1080/23311916.2020.1743404
Barazandeh, I., Mortazavi, S. S., & Rahmani, A. M. (2009). Intelligent Fuzzy based Biasing Load Balancing Algorithm in Distributed Systems. 2009 Ieee 9th Malaysia International Conference on Communications (Micc), 713-718. https://doi.org/10.1109/micc.2009.5431403
Bharti, M., Kumar, R., & Saxena, S. (2018). Clustering-based resource discovery on Internet-of-Things. International Journal of Communication Systems, 31(5), 23, Article e3501. https://doi.org/10.1002/dac.3501
Cai, M., Zhang, W. Y., Chen, G., Zhang, K., & Li, S. T. (2010). SWMRD: a Semantic Web-based manufacturing resource discovery system for cross-enterprise collaboration. International Journal of Production Research, 48(12), 3445-3460. https://doi.org/10.1080/00207540902814330
Chen, H. P., Jiang, J. W., Mang, B. W., & ieee. (2004, Aug 26-29). Design of an artificial-neural-network-based application-oriented grid resource discovery service. International Conference on Machine Learning and Cybernetics, Shanghai, PEOPLES R CHINA.
Chourasia, U., & Silakari, S. (2021). Adaptive Neuro-Fuzzy Interference and PNN Memory Based Grey Wolf Optimization Algorithm for Optimal Load Balancing. Wireless Personal Communications, 119(4), 3293-3318. https://doi.org/10.1007/s11277-021-08400-8
Di Girolamo, A., Legger, F., Paparrigopoulos, P., Schovancova, J., Beermann, T., Boehler, M., . . . Tuckus, N. (2022). Preparing Distributed Computing Operations for the HL-LHC Era With Operational Intelligence. Frontiers in Big Data, 4, 10, Article 753409. https://doi.org/10.3389/fdata.2021.753409
Dun, M., Li, Y. C., You, X., Sun, Q. X., Luan, Z. R., & Yang, H. L. (2020, Oct 02-04). Accelerating De Novo Assembler WTDBG2 on Commodity Servers.Lecture Notes in Computer Science. 20th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP), New York, NY.
Gharajeh, M. S. (2021). A knowledge and intelligent-based strategy for resource discovery on IaaS cloud systems. International Journal of Grid and Utility Computing, 12(2), 205-221.
Haibeh, L. A., Yagoub, M. C. E., & Jarray, A. (2022). A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management, and Optimization Approaches [Article]. Ieee Access, 10, 27591-27610. https://doi.org/10.1109/access.2022.3152787
Han, I., Kim, W., & Kim, H. (2005). An optimal load balancing method for the web-server cluster based on the ANFIS model. Ieice Transactions on Information and Systems, E88D(3), 652-653. https://doi.org/10.1093/ietisy/e88-d.3.652
Hui, Z., & Yong, L. (2014). Virtual machine migrating algorithm based on genetic algorithm in cloud data center. Applied Science, Materials Science and Information Technologies in Industry, 513-517, 2031-2034. https://doi.org/10.4028/www.scientific.net/AMM.513-517.2031
Kalaiselvi, S., & Selvi, C. S. K. (2020). Hybrid Cloud Resource Provisioning (HCRP) Algorithm for Optimal Resource Allocation Using MKFCM and Bat Algorithm. Wireless Personal Communications, 111(2), 1171-1185. https://doi.org/10.1007/s11277-019-06907-9
Khaneghah, E. M., ShowkatAbad, A. R., Ghahroodi, R. N., & Assoc Comp, M. (2018). Challenges of Process Migration to Support Distributed Exascale Computing Environment. Proceedings of 2018 7th International Conference on Software and Computer Applications (Icsca 2018), 20-24. https://doi.org/10.1145/3185089.3185098
Kulkarni, R. A., Patil, S. B., Balaji, N., & Ieee. (2017). Fuzzy based task prioritization and VM Migration of Deadline Constrained tasks in Cloud Systems. Proceedings of the International Conference on Inventive Computing and Informatics (Icici 2017), 400-404.
Lin, Q. L., Gong, Z. B., Wang, Q. L., & Li, J. L. (2019). TELNET: A Reinforcement Learning Based Load Balancing Approach for Datacenter Networks. Machine Learning for Networking, 11407, 44-55. https://doi.org/10.1007/978-3-030-19945-6_4
Ma, Y., Liang, Y. Y., & Jiang, X. P. (2011). The Strategy Research on Dynamic Discovery of Grid Resource. Advanced Research on Mechanical Engineering, Industry and Manufacturing Engineering, Pts 1 and 2, 63-64, 41-+. https://doi.org/10.4028/www.scientific.net/AMM.63-64.41
Ma, Y., Liang, Y. Y., & Jiang, X. P. (2011). The Strategy Research on Dynamic Discovery of Grid Resource. Advanced Research on Mechanical Engineering, Industry and Manufacturing Engineering, Pts 1 and 2, 63-64, 41-+. https://doi.org/10.4028/www.scientific.net/AMM.63-64.41
Mao, H. Y., Yuan, L., & Qi, Z. W. (2014). A Load Balancing and Overload Controlling Architecture in Clouding Computing. 2014 Ieee 17th International Conference on Computational Science and Engineering (CSE), 1589-1594. https://doi.org/10.1109/cse.2014.293
Mirtaheri, S. L., & Grandinetti, L. (2017). Dynamic load balancing in distributed exascale computing systems. Cluster Computing-the Journal of Networks Software Tools and Applications, 20(4), 3677-3689. https://doi.org/10.1007/s10586-017-0902-8
Negi, S., Rauthan, M. M. S., Vaisla, K. S., & Panwar, N. (2021). CMODLB: an efficient load balancing approach in cloud computing environment. Journal of Supercomputing, 77(8), 8787-8839. https://doi.org/10.1007/s11227-020-03601-7
Neri, F., Kotilainen, N., & Vapa, M. (2007). An adaptive global-local memetic algorithm to discover resources in P2P networks. Applications of Evolutionary Computing, Proceedings, 4448, 61-+.
Oikawa, A., Freitas, V., Castro, M., Pilla, L. L., & Soc, I. C. (2020, Mar 11-13). Adaptive Load Balancing based on Machine Learning for Iterative Parallel Applications.Euromicro Conference on Parallel, Distributed and Network-Based Processing. 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Electr Network.
Ramezani, F., Naderpour, M., Lu, J., & Ieee. (2016, Jul 24-29). A Multi-objective Optimization Model for Virtual Machine Mapping in Cloud Data Centres.IEEE International Fuzzy Systems Conference Proceedings. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) held as part of IEEE World Congress on Computational Intelligence (IEEE WCCI), Vancouver, CANADA.
Rantonen, M., Frantti, T., & Leiviska, K. (2010). Fuzzy expert system for load balancing in symmetric multiprocessor systems. Expert Systems with Applications, 37(12), 8711-8720. https://doi.org/10.1016/j.eswa.2010.06.049
Saleh, S. R., Khaneghah, E. M., Shadnoush, N., & Aliev, A. R. (2018). A mathematical framework for managing interactive communication distortions in exascale organizations. Cogent Business & Management, 5(1), 22, Article 1545356. https://doi.org/10.1080/23311975.2018.1545356
Setia, A., Swarup, V. M., Kumar, S., Singh, L., & Ieee. (2009). A Novel Adaptive Fuzzy Load Balancer for Heterogeneous LAM/MPI Clusters Applied to Evolutionary Learning in Neuro-Fuzzy Systems. 2009 Ieee International Conference on Fuzzy Systems, Vols 1-3, 68-+. https://doi.org/10.1109/fuzzy.2009.5277322
Shravya, K. S., Deepak, A., & Chandrasekaran, K. (2017). Using Genetic Algorithm for Process Migration in Multicore Kernels. Proceedings of International Conference on Communication and Networks, 508, 439-448. https://doi.org/10.1007/978-981-10-2750-5_46
Singla, C., Kaushal, S., & Ieee. (2015). Cloud Path Selection using Fuzzy Analytic Hierarchy Process for Offloading in Mobile Cloud Computing. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (Races), 5.
Stone, J. E., Gohara, D., & Shi, G. C. (2010). OpenCL: A PARALLEL PROGRAMMING STANDARD FOR HETEROGENEOUS COMPUTING SYSTEMS. Computing in Science & Engineering, 12(3), 66-72. https://doi.org/10.1109/mcse.2010.69
Suresh, M., Kumar, B. S., Karthik, S., & Ieee. (2014). A LOAD BALANCING MODEL IN PUBLIC CLOUD USING ANFIS AND GSO. 2014 International Conference on Intelligent Computing Applications (Icica 2014), 85-89. https://doi.org/10.1109/icica.2014.27
Tang, X. Y., Ding, Y., Lei, J. Y., Yang, H., & Song, Y. K. (2022). Dynamic load balancing method based on optimal complete matching of weighted bipartite graph for simulation tasks in multi-energy system digital twin applications. Energy Reports, 8, 1423-1431. https://doi.org/10.1016/j.egyr.2021.11.145
Tiwari, A., Lohani, Q. M. D., Muhuri, P. K., & Ieee. (2020, Jul 19-24). Interval-valued Intuitionistic Fuzzy TOPSIS method for Supplier Selection Problem.IEEE International Conference on Fuzzy Systems. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Electr Network.
Vaithiya, S. S., Bhanu, S. M. S., & Ieee. (2013). Ontology-based Resource Discovery Mechanism for Mobile Grid Environment. 2013 Second International Conference on Advanced Computing, Networking and Security (Adcons 2013), 154-159. https://doi.org/10.1109/adcons.2013.21
Wu, J., Wang, Z. Y., & Gao, S. S. (2014, Jun 25-27). Assessing the Cloud Migration Readiness A Fuzzy AHP Approach Based on BTR Framework.International Conference on Service Systems and Service Management. 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing Jiaotong Univ, Int Ctr Informat Res, Beijing, PEOPLES R CHINA.
Wu, X., Wang, H. H., Tan, W., Wei, D. S., & Shi, M. Y. (2020). Dynamic allocation strategy of VM resources with fuzzy transfer learning method. Peer-to-Peer Networking and Applications, 13(6), 2201-2213. https://doi.org/10.1007/s12083-020-00885-7