PROVIDE A MODEL BASED SENTIMENT ANALYSIS SYSTEM FOR SALES PREDICTION IN MARKETING ACCORDING TO THE AGA-LSTM NEURAL NETWORK MODEL

Volume 6 (1), June 2023, Pages 30-48

Shiva Babaei1, Mohammad Tahghighi Sharabyan1, Akbar Babaei2, Zahra Tayyebi Qasabeh3 


1 Islamic Azad University, Zanjan Branch, Zanjan, Iran, This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

2 Zanjan University of Medical Sciences, Zanjan, Iran, This email address is being protected from spambots. You need JavaScript enabled to view it.

3 Payame Noor University of Guilan, Guilan, Iran, This email address is being protected from spambots. You need JavaScript enabled to view it.


Abstract

Data is today's most powerful tool; valuable facts and information can be determined by analyzing them using appropriate techniques and algorithms. Also, the rapid increase in access to Internet technology to a large mass of people worldwide has increased the importance of analyzing data generated on the web much more than before. The preceding discussion of this research is sales forecasting in marketing, which is very important in this topic. Marketing is a tool through which people's standard of living is developed, which is done before and after the sale. This research presents a model based on a dynamic analysis system for forecasting marketing sales based on the AGA-LSTM neural network model. It is challenging to recognize emotions in natural language, even for humans, and automatic recognition makes it more complicated. This research presents a hybrid deep-learning model for accurate sentiment prediction in real-time multimodal data. In the proposed method, the work process is such that after extracting emotional data from social networks, they are pre-processed and prepared for pattern discovery. The data is evaluated in the adaptive genetic algorithm, and the pattern is discovered in the designed neural network, and this pattern is discovered after discovery. The cornerstone of sales policies is improved. The adaptive genetic algorithm was used to optimize the parameters of the LSTM model, and the model can predict the types of goods and the total volume of online retail sales. In the simulation of the proposed method, in 3000 rounds of training, an accuracy of 76 has been achieved, which is an improvement of 11% compared to the primary method.

Keywords:

Sentiment Analysis System, Sales Forecasting, AGA-LSTM Neural Network Marketing, Adaptive Genetic Algorithm.

DOI: https://doi.org/10.32010/26166127.2023.6.1.30.48

 

 

Reference 

Bian, Q. (2021). Social Media Marketing Optimization Method Based on Deep Neural Network and Evolutionary Algorithm. Scientific Programming, 2021, 1-11.

Chen, K. (2020, October). An Online Retail Prediction Model Based on AGA-LSTM Neural Network. In 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI) (pp. 145-149). IEEE.

Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good - An ethical perspective. Journal of Business Ethics, 179(1), 43-61.

Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50.

Khatiwada, A., Kadariya, P., Agrahari, S., & Dhakal, R. (2019, December). Big Data Analytics and Deep Learning Based Sentiment Analysis System for Sales Prediction. In 2019 IEEE Pune Section International Conference (PuneCon) (pp. 1-6). IEEE.

Markić, B. (2019). Genetic Algorithm and Optimization of the Sales Assortment Structure. CroDiM: International Journal of Marketing Science, 2(1), 107-115.

Robles, J. F., Chica, M., & Cordon, O. (2020). Evolutionary multiobjective optimization to target social network influentials in viral marketing. Expert systems with applications, 147, 113183.

Zhou, G., Sentana, L., Skokan, I., & Prada, A. (2021). Marketing Mix Modelling Using Multi-objective Hyperparameter Optimization.