SHORT-TERM WIND SPEED FORECASTING USING DEEP VARIATIONAL LSTM

Volume 5 (2), December 2022, Pages 254-272

Navid Atashfaraz1 and Mohammad Manthouri2


1North Tehran Branch Azad University, Tehran, Iran, This email address is being protected from spambots. You need JavaScript enabled to view it.

2Shahed University, Tehran, Iran, This email address is being protected from spambots. You need JavaScript enabled to view it.


Abstract

Wind speed and power at wind power stations affect the efficiency of a wind farm, so accurate wind forecasting, a nonlinear signal with high fluctuations, increases security and better efficiency than wind power. We are looking for wind speed for a wind farm in Iran. In this research, a combined neural network created from variational autoencoder (VAE), long-term, short-term memory (LSTM), and multilayer perceptron (MLP) for dimension Reduction and encoding is proposed for predicting short-term wind speeds. The data used in this research is related to the statistics of 10 minutes of wind speed in 10- meter, 30-meter, and 40-meter wind turbines, the standard deviation of wind speed, air temperature, and humidity. To compare the proposed model (V- LSTM-MLP), we implemented three deep neural network models, including Stacked Auto-Encoder (SAE), recurrent neural networks (Regular LSTM), and hybrid model Encoder-Decoder recurrent network (LSTM-Encoder-MLP) presented on this dataset. According to the RMSE statistical index, the proposed model is worth 0.1127 for a short time and performs better than other types on this dataset.

Keywords:

LSTM, VAE, MLP, Wind Speed Prediction, Dimension Reduction, Encoder-Decoder.

DOI: https://doi.org/10.32010/26166127.2022.5.2.254.272

 

 

Reference 

Barbounis, T., & Theocharis, J. (2007). Locally recurrent neural networks for wind speed prediction using spatial correlation. Information Sciences, 177(24), 5775–5797.https://doi.org/10.1016/j.ins.2007.05.024

Bhaskar, K., & Singh, S. N. (2012). AWNN-Assisted Wind Power Forecasting Using Feedforward Neural Network. IEEE Transactions on Sustainable Energy, 3(2),306–315.https://doi.org/10.1109/tste.2011.2182215

Cybenko, G. (1989a). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems,2(4),303–314. https://doi.org10.1007/ bf02551274.

Damousis, I., Alexiadis, M., Theocharis, J., & Dokopoulos, P. (2004). A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation. IEEE Transactions on Energy Conversion, 19(2),352361.https://doi.org/10.1109/tec.2003.821865

Deo, R. C., & Samui, P. (2017). Forecasting Evaporative Loss by Least-Square Support-Vector Regression and Evaluation with Genetic Programming, Gaussian Process, and Minimax Probability Machine Regression: Case Study of Brisbane City. Journal of Hydrologic Engineering, 22(6), 05017003. https://doi.org/10.1061/(asce)he.1943-5584.0001506

Eseye, A. T., Zhang, J., Zheng, D., Ma, H., & Jingfu, G. (2017, March). A double-stage hierarchical ANFIS model for short-term wind power prediction. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA) (pp. 546–551). IEEE.

Georgilakis, P. S. (2008). Technical challenges associated with the integration of wind power into power systems. Renewable and Sustainable Energy Reviews, 12(3),852–863. https://doi.org/10.1016/j.rser.2006.10.007

Ghorbani, M. A., Khatibi, R., Hosseini, B., & Bilgili, M. (2013). Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theoretical andApplied Climatology, 114(1-2),107–114. https://doi.org/10.1007/s00704-012-0821-9

Goodfellow, I., Yoshua Bengio, & Courville, A. (2016). Deep Learning. MIT Press.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Hu, Y. L., & Chen, L. (2018). A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm. Energy Conversion and Management, 173, 123–142. https://doi.org/10.1016/j.enconman.2018.07.070

Kawamoto, A. H., McClelland, J. L., & Rumelhart, D. E. (1989). Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises. The American Journal of Psychology, 102(3), 435. https://doi.org/10.2307/1423065

Khodayar, M., Kaynak, O., & Khodayar, M. E. (2017). Rough Deep Neural Architecture for Short-Term Wind Speed Forecasting. IEEE Transactions on Industrial Informatics, 13(6),2770–2779. https://doi.org/10.1109/tii.2017.2730846

Khodayar, M., Wang, J., & Manthouri, M. (2019). Interval Deep Generative Neural Network for Wind Speed Forecasting. IEEE Transactions on Smart Grid, 10(4),3974–3989. https://doi.org/10.1109/tsg.2018.2847223

Kingma, D.P., & Welling, M. (2014, April). Stochastic gradient VB and the variational auto-encoder. In Second International Conference on Learning Representations, ICLR (Vol. 19, p. 121). https://doi.org/10.48550/arXiv.1312.6114

Zhou, J., Shi, J., & Li, G. (2011). Fine tuning support vector machines for short-term wind speed forecasting. Energy Conversion and Management, 52(4), 1990–1998. https://doi.org/10.1016/j.enconman.2010.11.007

Liu, H., Mi, X., & Li, Y. (2018). Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Conversion and Management, 159, 54–64. https://doi.org/10.1016/j.enconman.2018.01.010

Liu, Z., Jiang, P., Zhang, L., & Niu, X. (2020). A combined forecasting model for time series: Application to short-term wind speed forecasting. Applied Energy, 259, 114137.https://doi.org/10.1016/j.apenergy.2019.114137

Long Short-Term Memory (LSTM). (2020, February 21). NVIDIADeveloper.https://developer.nvidia.com/discover/lstm

Memarzadeh, G., & Keynia, F. (2020). A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. Energy Conversion and Management, 213, 112824. https://doi.org/10.1016/j.enconman.2020.112824

Meng, A., Ge, J., Yin, H., & Chen, S. (2016). Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Conversion and Management, 114,75–88. https://doi.org/10.1016/j.enconman.2016.02.013

Mir, M., Shafieezadeh, M., Heidari, M. A., & Ghadimi, N. (2019). Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems, 11(4), 559–573. https://doi.org/10.1007/s12530-019-09271-y

Mirzapour, F., Lakzaei, M., Varamini, G., Teimourian, M., & Ghadimi, N. (2017). A new prediction model of battery and wind-solar output in hybrid power system. Journal of Ambient Intelligence and Humanized Computing, 10(1), 77–87. https://doi.org/10.1007/s12652-017-0600-7

‌Multilayer Perceptron Learning in TensorFlow. (2021, November3).GeeksforGeeks.https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/

Patidar, M., Agarwal, P., Vig, L., & Shroff, G. (2017). Correcting Linguistic Training Bias in an FAQ-bot using LSTM-VAE. In DMNLP Workshop of ECML-PKDD.

Peng, Z., Peng, S., Fu, L., Lu, B., Tang, J., Wang, K., & Li, W. (2020). A novel deep learning ensemble model with data denoising for short-term wind speed forecasting. Energy Conversion and Management, 207, 112524. https://doi.org/10.1016/j.enconman.2020.112524

Philippopoulos, K., & Deligiorgi, D. (2012). Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renewable Energy, 38(1), 75–82. https://doi.org/10.1016/j.renene.2011.07.007

Ricalde, L. J., Catzin, G. A., Alanis, A. Y., & Sanchez, E. N. (2011). Higher Order Wavelet Neural Networks with Kalman learning for wind speed forecasting. 2011 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). https://doi.org/10.1109/ciasg.2011.5953332

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc Buffalo NY.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088),533–536. https://doi.org/10.1038/323533a0

Sder, L., Hofmann, L., Orths, A., Holttinen, H., Wan, Y. H., & Tuohy, A. (2007). Experience From Wind Integration in Some High Penetration Areas. IEEE Transactions on Energy Conversion, 22(1), 4–12. https://doi.org/10.1109/tec.2006.889604

Smith, J. C., Milligan, M. R., DeMeo, E. A., & Parsons, B. (2007). Utility Wind Integration and Operating Impact State of the Art. IEEE Transactions on Power Systems, 22(3), 900–908. https://doi.org/10.1109/tpwrs.2007.901598

Tascikaraoglu, A., & Uzunoglu, M. (2014). A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews, 34, 243–254. https://doi.org/10.1016/j.rser.2014.03.033

Vinothkumar, T., & Deeba, K. (2019). Hybrid wind speed prediction model based on recurrent long short-term memory neural network and support vector machine models. Soft Computing, 24(7), 5345–5355. https://doi.org/10.1007/s00500-019-04292-w

Welch, R. L., Ruffing, S. M., & Venayagamoorthy, G. K. (2009, June). Comparison of feedforward and feedback neural network architectures for short term wind speed prediction. In 2009 International Joint Conference on Neural Networks (pp.23335-3340). IEEE. https://doi.org/10.1109/ijcnn.2009.5179034

Weng, L. (2018, August 12). From Autoencoder to Beta-VAE. Lil’Log. https://lilianweng.github.io/posts/2018-08-12-vae/

Zhou, J., Shi, J., & Li, G. (2011). Fine tuning support vector machines for short-term wind speed forecasting. Energy Conversion and Management, 52(4), 1990–1998. https://doi.org/10.1016/j.enconman.2010.11.007